
Journal of Statistical Physics, Vol. 58, Nos. 5/6, 1990 

Diffusion Reproduction Processes 

Yi-Cheng Zhang, l Maurizio Serva, 1 and Mikhail Polikarpov 2 

Received May' 12, 1989," revision received September 27, 1989 

Interesting physics emerges from studying a population of reproducing 
individuals. Each can be regarded as a random walker, but it can either 
duplicate or die. Novel features of the collective behavior are quite surprising: 
if individuals reproduce or die freely, the life expectation is proportional to the 
size of the population, and if it is kept constant, the center of mass moves in 
space as if it were a single walker (i.e., the diffusion constant is independent of 
population's size). Biology-inspired interactions are also considered. 

KEY W O R D S :  Population dynamics; fluctuation; localization. 

1. THE M O D E L  A N D  S U R V I V A L  OF A POPULATION 

We consider a large population of N individuals. Each of them can undergo 
a Brownian motion in d-dimensional space. However, each individual can 
duplicate, or disappear, with equal probability. The aim in this work is to 
illustrate novel features of this model, in the simplest possible way. All 
input constants, coefficients, etc., are assumed to be unity, unless otherwise 
specified. The time variable t assumes integer values which we call genera- 
tions. After each generation, each individual in the population faces two 
possibilities, independently and with equal probability: either it becomes 
two individuals (duplication) conserving whatever identity the individual at 
the generation before may have had, or it simply disappears (death). The 
duplicated new individuals are identified with their parent individual--we 
say it has survived. 

Let us ignore their positions and motion in space for the moment. 
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First we concentrate on the question of the survival of such a randomly 
reproducing population. Denote by N the size of the initial population 
and by N(t) the size of the population at time t, N(0)=  N. We have the 
following evolution relation: 

N(t) 

N( t+ l )=N( t )+  ~ 7i(t) (1) 

where the the death-reproduction rate of the ith individual 7~(t) assumes 
the values - 1  and 1 with equal probability, the labeling is arbitrary. Note 
that (N(t))  = N, where the average ( . )  is over the reproductive noise 7i(t), 
which is defined as (Te( t ) )=  0, (7~( t )7 j ( t ' ) )~  6i, j 6t, t, and the Kronecker 
6-symbols are used. From the above relations we obtain the second 
moment, by repeated iterations, 

( [N( t ) ]  2) = ( I N ( t -  1)]2) + N  . . . . .  N 2+ tN 

from which we obtain the fluctuation of the population's size, 

JAN(t)] 2 = ( IN( t )  - (N(t)) ]2) = Nt 

The population's size N(t) is expected typically to lie in the range 
N - A N ( t )  to N+ A(t), where 

AN(t) = ( N t )  1/2 (2) 

This shows that the amplitude of the population fluctuation AN(t) is an 
increasing function of t. There exists a typical lifetime r ~ N, which is 
defined as the time at which fluctuations JAN(z)~ N]  become as large as 
mean values themselves, and beyond which the population is extinct with 
finite probability (close to one). (This typical lifetime is different from the 
mean lifetime; the latter is infinite--see Appendix for more discussion.) This 
is very similar to the "first-passage" problem studied in the context of 
random walks, (t) where the typical situation is when a walker goes over a 
"cliff," passing a point of no return. 

There is typically a gain or a loss of ~ individuals in the population. 
As a result, a freely reproducing population (anarchy) is doomed, no 
matter how large its initial size--a single large negative fluctuation can 
eliminate it. 3 There is a "milder" way of introducing reproductive noise, 
though, but we shall see that it does not change the above qualitative con- 
clusion by much. We may choose to impose a constraint on the random 
death-reproduction rates in Eq. (1). We require that the global 
death-reproduction noise a(t)=~2N_l y~(t), rather than 7i(t) itself, should 

3 Extinction due to statistical fluctuations is known in population dynamics. See, e.g., ref. 2. 
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be independently distributed so that (a(t)a(t'))~g),,,,. This implies that 
the individual death and reproduction rates inside the population should 
greatly compensate each other, so that in each generation the population 
only increases or decreases by one individual. Following a similar analysis, 
we obtain AN(t) ~ ~ instead of (Nt) 1/2, and the typical lifetime becomes 
z-=N 2. 

2. C O N S T A N T  P O P U L A T I O N S  A N D  
I N T E R N A L  F L U C T U A T I O N S  

For many realistic biological systems, global populations are expected 
to vary in time at much slower rates, at least for those that have survived 
long enough to be of most interest to us. For instance, through food and 
other resource availability or ecological factors, populations may be main- 
tained constant or slowly changing. Our concern here is, however, the 
relative fluctuations inside a population. In the following we shall only con- 
sider constant populations ( =  N). The arguments and the results in this 
work can be easily extended to nonconstant populations. 

Global population conservation implies that at each generation 
exactly half of the individuals (randomly chosen) duplicate, the other half 
die. Large reproductive fluctuations inside a population, nevertheless, are 
still characterized by the time scale ~ ~ N. This is because the reproductive 
noise is still capable of reducing a large portion, comparable to the global 
population, to a few individuals, or magnifying a small portion of a few 
individuals to the size of the global population, in a typical time interval 
r. Part of the population, eventually only one individual, proliferates at the 
expense of all the other individuals. After a time lapse z, all the individuals 
of the population can be regarded as offspring of a lucky individual at the 
beginning. We conclude that in any time interval ~, the content of the 
population is substituted almost completely (except one survivor). 

3. THE I N D I V I D U A L S  AS R A N D O M  W A L K E R S  IN SPACE 

Let us now al low these individuals to move in a d-dimensional con- 

t inuum space. Each of them is subject to an independent positional noise, 
and thus undergoes a Brownian motion. For the moment we do not con- 
sider interactions among the individuals. The two members of a duplicated 
pair of individua are put in the place of their parent individual, inheriting 
the positional information (and whatever other identities). Each member of 
the pair, however, will act independently of the other after birth. If we 
simulate this population on a computer (or in one's mind) we find that, 
starting from any initial distribution, after a long time (t > N), the popula- 
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tion will reach a dynamical equilibrium state. In this state the population 
will occupy a finite region and its physical extension will not disperse 
further in space, as if there were a force holding it together. A computer 
rendering is illustrated in Fig. 1. Some remarks are useful in understanding 
the figures, which are three sequential snapshots at 0th, 50th, and 400th 
generations, respectively. We simulate a population of 500 individuals in a 
two-dimensional continuum space. We take an initial configuration in 
which the individuals are randomly distributed (with uniform probability) 
in a square region, as shown in Fig. la. The individuals do not interact 
with each other and they independently duplicate or die, but are subject to 
the constraint of global population conservation. Each individual, in a unit 
time interval (generation), will make a move in a random direction, of 
random step length (Gaussian distributed with variance one); then it will 
either duplicate or disappear. 

We let the population evolve after some generations say, 50, as shown 
in Fig. lb. We see clusters, or islands, forming. There are large empty 
regions between the islands. Each island most likely consists of offspring of 
a single (intermediate) ancestor, i.e., it is a family with the same "surname." 
In principle, inter-island travel is possible (some individuals leave an island 
to joint another). The odds for a small split-up group to survive are dis- 
couraging, as is the perspective of not-too-large islands. Analogues can be 
found in gambling theories: Given that the winning losing odds are fair, a 
gambler with a small budget is not likely to play long, though, in principle, 
he or she can become a millionaire. Such analogues can also be found in 
social, economical competitions. Thanks to global population conserva- 
tion, someone has to survive. The largest island near the lower-left corner 
in Fig. lb (it may consist of three adjacent islands) is the most hopeful 
candidate. 

Now the population has evolved through 400 generations, as shown in 
Fig. lc. As suspected, the largest island in Fig. lb has indeed imprinted its 
dominance on the future of the population (we can infer this from its posi- 
tion). The concentration of the population is more pronounced. Note that 
the center of mass has drifted a considerable distance ( ~  20, on the scale 
of the figures), comparable to that of a single random walker. Evolving 
further, the population will reach a dynamical equilibrium state, in which 
the population is concentrated in a large, single island of linear size x/-N. 
There will be constant, spontaneous, short-lived breakoffs from the central 
island. 

The reason a population cannot disperse indefinitely is that the 
existence of the individuals cannot be so preserved. The time available for 
any two individuals (given that both survive long enough) to diffuse apart is 
bounded by z ~ N. We can regard this pair as two random walkers released 
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(c) 
Fig. 1. The population distribution at different generations. The 2D space is continuous and 
the scales are arbitrary. (a) The population starts with a uniform distribution; (b) the 
evolution after 50 generations; (c) after 400 generations. From these snapshots one may infer 
the future of the population; see the text for the interpretations 



854 Zhang e t  al. 

from each other. After a time span ~, the distance apart is proportional to 
x/N. Since this is the upper bound on the interindividual distance, the 
linear dimension of the population, after sufficiently long time t > N, is 

Thus, we conclude that the population is always confined in a region of 
linear size x/N, independent of the dimensionality d of space. 

4. THE MOBIL ITY  OF THE CENTER OF M A S S  

The population as a whole or, more specifically, its center of mass can 
be regarded as a free random walker in space as well. Suppose that the 
mean displacement per generation (mean displacement, or MD for short) 
for a single individual is one; what is the corresponding value for the center 
of mass? If the individuals were truly independent random walkers, the 
mean displacement of the center of mass would be 

XMD ~ 1 / ~  (4) 

as a consequence of the central limit theorem. However, we know that 
there is an effective correlation--shared ancestry. 

How is XMD influenced by this correlation? Denote by xc(t ) the 
position of the center of mass of a population at a given time t; we have 

2 = ( [ x c ( f + l ) - x c ( 0 ] 2 >  (s)  XMD 

where ( .  ~ denotes the average over positional noise. By definition, 

x~(t+l)-x~(O=N 2 x,(t+l)-  xj(O (6) 
i = i  j = l  

where xi(t ) denotes the ith individual's position. We recall that between 
two successive generations t and t + i, half of the N individuals of genera- 
tion t disappear; each of the other hand becomes two. Take the approxima- 
tion that no random walk has occurred in the interval t to t +  i; the 
duplicated pairs would then stay in their parents' positions. In this 
approximation we have 52~_ i xi(t + I) = 2 ~]N~2 Xi(t), this implies that N/2 
terms in the above relation (6) cancel out. The RHS of Eq. (6) becomes 

1 N/2 
~r ~ Exi(t)--X,+u/2(t)] (7) 

i=1 

where we have used the fact that the ordering index i is arbitrary. 
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Let us evaluate XMD only for the one-dimensional case; for d >  1 one 
can simply repeat the analysis for each of the d projections. Each difference 
in the sum in (7) is bounded by the length R in Eq. (3), with random + 
signs. The sum in (7) yMds -t- x/@ R; thus, the above expression should b-e 
proportional to _+ R/,~/NN. Using Eq. (3), we obtain the estimate 

~ R / , , / N ~  O(1) (8) 

It is easy to check that this result is also true for arbitrary dimensionality, 
as long as N>> d. We have also performed numerical simulations for d =  1, 
2, and 3, which confirm that XMD is a constant for all N. 

This result (8) implies that, say, a population of 100 and a population 
of one billion move equally fast; hence, the diffusion constant ( ~ ~ )  
for the center of mass is independent of N. It is instructive to see how such 
coherence is achieved. From the previous discussion we learn that, after a 
time ~ > N, only one individual survives and the rest of the population can 
be regarded as its offspring. It is not surprising that the trace of the center 
of mass and the trace of the survivor can be identified in the long run. The 
above conclusion about XMD is, however, a stronger statement. It asserts 
that even between two successive generations, the center of mass moves a 
distance of order one. Intuitively, this is because the linear size of a popula- 
tion increases with N ( R ~ , , / N ) ,  but, since in each generation N/2 
individuals die, there is a large rearrangement of the center of mass which 
compensates exactly the statistical factor 1/,,fN. 

5. A S S I G N  S U R N A M E S  TO THE I N D I V I D U A L S  

So far we have being dealing with identical individuals, distinguished 
only by their different positions. We can assign distinct attributes, say 
surnames, to the individuals. As the population evolves, the number of the 
distinct surnames or the number of the islands in the figures decreases. Let 
us estimate the rate of this decrease. Suppose that all the N individuals 
are distinct at the beginning. At some given time there will be M =  N/S 
distinctive surnames left; S is the mean size of the subpopulation whose 
members share the same surname. From the above discussion we know 
that a subpopulation of size S can survive for a time span ~ S. This implies 
that during a small time interval At, each of the M subpopulations (of 
size S) has a probability proportional to At/S to disappear. In other words, 
there will be (MAt/S) surnames of such size who become extinct. Using a 
continuum approximation, we have (the minus sign accounts for decrease 
and S = N/M) 

dM/dt~ -MIX (9) 
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Solving this differential equation, we obtain 

M ~ N / t  (10) 

where t ~< N and for t > N, M = 1. 
Such a population is destined to monotony and it is rather dull. 

One can imagine that each individual has a small probability c ( ~  1) of 
changing its surname spontaneously (mutation). In a unit time interval 
there will be cN new surnames in the population. We ignore the loss of sur- 
names due to mutations which are sub-leading-order contributions. We can 
include this effect in Eq. (9) by adding cN to the RHS. We expect in the 
large-time limit that the number of distinct surnames reaches a plateau, 
hence dM/dt = 0. Balancing the decrease due to reproductive fluctuations 
and the gain due to spontaneous mutations, we have - M / S  + cN = 0. The 
number of distinct surnames is no longer destined to be reduced to one. 
Rather, in a stationary state, from the above relation, there are M = ~ N 
distinct species (surnames) of the mean size S =  1/x/-~ ~> 1. 

The above result also has implications for the previously discussed 
identical random walkers. Suppose that each random walker undergoes a 
"normal" Brownian motion, i.e., the mean free path of order one, as dis- 
cussed above. However, for each walker and each time step (generation), 
there is a small probability c of jumping (randomly oriented) a large 
distance L ~> 1, such that it is out of the region occupied by the rest of the 
population. If an isolated walker is to survive, it will develop into an island, 
as those shown in the figures. The above result implies that there will be 
x f ~  N islands, each of them of size 1/,,/c-, on the average. Contrary to the 
single island dominance shown in Fig. lc, all the islands will have more or 
less the same size--a democratic situation. 

6. THE I N D I V I D U A L S  W I T H  I N T E R A C T I O N S  

6.1. A t t rac t ion  

We first consider the attractive interaction: Each individual has a 
tendency to be close to its nearest neighboring individuals. We have a 
hypothetical situation in which each individual, e.g., for fear of being alone 
(given that small groups are more "susceptible" to adverse reproductive 
fluctuations) or for some other reason, seeks to be linked to the others. We 
assume for simplicity that the attractive force in position space between 
two neighboring individuals is proportional to their distance, similar to the 
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elastic force of a harmonic oscillator. In one dimension (d=  1 ) we have the 
following stochastic equation for the ith individual: 

dxi 1 
dt - 2 (x~ + 1 + x~_ 1 - 2x~) + q ~( t ) (11) 

where t/i(t ) is the positional noise which is uncorrelated, i.e., 
( q i ( t ) t l j ( t ' ) ) ~ 6 i ,  j~ , , , ,  and the boundaries ( i = I , N )  are free. Here the 
ordering is only a bookkeeping notation, to give instantaneous labels to 
the individuals. At any time t, sequential ordering i = 1, 2, ..., N denotes the 
actual consecutive positions of the individuals, i.e., x~ <x2 < -.. <xN, 
regardless of what their previous labels were. If in the successive genera- 
tions two individuals should be exchanged in position space, so should the 
ordering. In a higher dimensional space, equations similar to (11) can also 
be given, but there are different ways in doing so. However, as long as the 
interactions are local, from the discussion below we will see that the 
conclusion should be the same. 

It is easy to estimate the linear size of the population and other related 
physical quantities. For the population to reach dynamic equilibrium 
(stationary state), the deterministic attractive force that keeps the popula- 
tion together and the stochastic force that disperses it should balance. For 
a single individual the former is proportional to the mean interindividual 
distance and the latter is taken to be of order one. Denote by R~ the linear 
size of the population. The population density is N/R~; thus, the attractive 
force is proportional to the mean interindividual distance R S N  ~/a. It 
should be equated to the stochastic force of O(1), i.e., R~/N~/a~ I. We then 
obtain the estimate 

Ra ~ N 1/a (12) 

We have treated the population as if there were no death and 
reproduction. They enter into play only though the characteristic time 
r ~ N. From the previous discussion we know that, after the characteristic 
time z, the population contains only (except one) new individuals. In the 
absence of interactions, their inherent correlation yields R ~ x / N  for all 
dimensions. Thus, the correct Ra is given by 

[1/2, d<~d,, (13) 
R a = N ~ '  ~ = ( 1 / d ,  d > d c  

where dc=  2. For example, when d =  l, a completely relaxed system would 
reach a size proportional to N, by (12). However, due to the limited 
lifetime available to the majority of the population, this relaxed size can 

822/58/5-6-5 
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never be reached. As is standard in physics, d is not limited to integer 
values; extrapolation to noninteger d is understood in (13) and in other 
results below. 

6.2. Repulsion 

We may also consider the opposite situation, i.e., when the individuals 
want to stay away from each other. This effect can be modeled by a local 
repulsive interaction. The reasons for repulsion may be that, for instance, 
in overcrowded regions, the repoduction rate is reduced or food shortage 
causes the higher death rate; or the individuals born in crowed regions tend 
to immigrate. The size of the population is still taken to be constant. Here 
also we can estimate the linear size of the population, as in the above 
discussion of the attraction case. Denote by Rr the linear size of the 
"repulsive" population; its expansion rate should be proportional to the 
"force" of the local repulsion. That is, 

dRr/dt  ~ - Op/~?Rr (14) 

where p = N/Rdr is the mean local population density and the repulsive 
potential is taken to be proportional to the density. 

The above relation is very similar to that proposed by Pietronero (3) 
for the "true" self-avoiding walk, which is based on the same type of kinetic 
local repulsion. Integrating Eq. (14) leads to Rar+2~ Nt. In the stationary 
state, t should be replaced by r ~ N, the characteristic time. We obtain 

R r ~ N  2/(d+ 2) (15) 

Note that we encounter again the critical dimension dc - 2. When d >  dc we 
know that Rr ~ N 1/2, in the absence of repulsion, which implies that the 
local repulsive interaction now is not relevant. The corrent relation is 

~2/(d+ 2), d<~d c (16) 
Rr ~ N ~, /3 = [ 1/2, d > dc 

Recall that the mean displacement of a population is given by (8): 
x ~ r , ~ R / x / N .  Replacing R in this equation by (13) and (16), we can 
obtain the mean displacement XMD, hence the diffusion constant, for a 
population with attractive or repulsive interaction, respectively. 

6.3. At t ract ion  and Repulsion Combined 

We may have to face the situation in which both attraction and repul- 
sion are present. Naively, one may expect that either they exactly cancel 
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each other or one of them is dominant such that only one manifests itself. 
However, the two interactions we have considered above have a different 
dependence on space dimensionality. Therefore, neither interation can 
dominate for all d. In fact, when we consider simultaneously attraction and 
repulsion, which amounts to combining Eqs. (13) and (16), we obtain 

~2/(d+ 2), d<~d c (17) 
Rat ~N~' (=(1/d,  d>~dc. 

where dc=  2 as before. This shows that, below d~, the repulsive interaction 
is dominant, whereas the attractive interaction is negligible; above de, the 
situation is reversed. 

7. CONCLUSIONS 

Salient features of our model that differ from traditional diffusion are 
due to reproductive fluctuations: some individuals may happen to 
reproduce more at the expense of some others. There is a characteristic 
time v --~ N, central to our study, during which the population can be regar- 
ded as offspring of a single lucky individual. As a result, the population 
cannot diffuse apart indefinitely. Rather, it is confined to a region of linear 
extension ,,fN. Large internal reproductive noise results in the large 
mobility of the center of mass of the population. Simple local interactions 
are introduced to mimic a biological system. Stationary states in the 
presence of interactions are of particular interest; here the characteristic 
time always plays a crucial role. 

A P P E N D I X  

Here we derive the probability distribution function of the lifetime of 
a population. Consider a population whose initial size is N and apply the 
dynamic rules of our model (1). Denote by Pt(n) the probability that the 
population reaches the size n at time t. Note that our rules in Eq. (1) 
produce only even integer values (including 0) of possible population size; 
hence in the following we consider only even population sizes (including 
the initial value N). We have the following master evolution equation: 

Pt+~(m) = L C.,m/2Pt(n)/2" (18) 
n = 0 , 2  .... 

where Cn, m/2 = ( m ~ 2 ) ,  when n>~m/2, Cn, m/2 = 0  otherwise, and the initial 
condition Po(n)= 6n.u. We are interested in the probability of extinction at 
time t, P,(0), which satisfies Pt(0)~>P,_~(0)~> ...  >~Po(0), where the 
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equality holds after extinction. This is because in Eq. (18) the probability 
of extinction P~(0) does not contribute any more to P~+~(m ~0);  in other 
words, there is no recurrence probability. This is to be contrasted with the 
"first passage" problem in random walks. 

Let us define the generating function at time t 

G,(z) - ~ zmp,(m) (19) 
m = 0 , 2  . . . .  

From the master equation we obtain the following recursive relation: 

(20) 

The initial condition becomes Go(z)=Z N. From the above relations we 
can obtain the distribution function F(t)=-Pt(O)=Gt(O), which is the 
probability that the population at time t becomes extinct. Using Eq. (20) 
and the initial condition Go(z) = z N, we can obtain Gt(0) iteratively. Denote 
by Gr we have 

2 

1 + u  t ;Uo= 0 (21) 
ut+l= 2 ' 

Using the continuum-time approximation, we can readily deduce the 
asymptotic behavior (t~> 1) of ut, ut ~ - (1 -2 / t ) .  We finally obtain the 
distribution function 

F(t) ~- (1 - 2/t) N (22) 

Note that for any given initial population size N ( >> 1), for long enough 
time t the population is destined to become extinct, confirming the intuitive 
conclusion in the text. For both asymptotically large N and t, F(t) becomes 
appreciable only when t is proportional to N or larger, when approximately 
F(t) ~-exp -2N/ t .  This allows us to define the typical lifetime ~ = N that 
with finite probability the population will become extinct. As a scaling 
function of large N we can say that F(r) can be arbitrarily close to one. 

However, the "tail" of F(t) can be very long for large t. In fact, the 
distribution density is f ( t ) =  dF/dt ~ 1/t 2 exp -2N/ t ,  which implies that the 
mean lifetime ( t )  is divergent (though only logarithmically, weaker than 
that of the "first passage" problem below). 

A similar problem is the typical "first passage" time in the context of 
the classical random walk. If an unbiased random walker starts at N, the 
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"first passage" time t th rough  0 has distribution density/5) f ( t ) ~  

1 / t 3 / 2 e x p ( - N 2 / 2 t ) .  In ref. 5 full discussion is given of the apparent  
paradox:  while the r a n d o m  walker has probabil i ty one to cross the origin, 
the mean  "first passage" time ( t )  is infinite. For  N large we can 
nevertheless define a typical  first passage time ~ ~ N 2, similar to the above 
discussion on the popula t ion  dynamics. 

A C K N O W L E D G M E N T S  

We thank the anonymous  referee whose comments  p rompted  us to 
furnish the above appendix. We also thank D. J. Amit for a critical reading 
of the work. 

R E F E R E N C E S  

1. M. E. Fisher, J. Stat. Phys. 34:667 (1984), and references therein. 
2. E. G. Leigh, Jr., J. Theor. Biol. 90:213 239 (1981), and references therein. 
3. L. Pietronero, Phys. Rev. B 38:5647 5649 (1983). 
4. C. Amitrano, L. Peliti, and M. Saber, C. R. Acad. Sci. Paris 307:803 (1988). 
5. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 

1966). 


